Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.507
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Prostate ; 84(9): 814-822, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38558458

RESUMO

BACKGROUND: Tumor initiation and progression necessitate a metabolic shift in cancer cells. Consequently, the progression of prostate cancer (PCa), a leading cause of cancer-related deaths in males globally, involves a shift from lipogenic to glycolytic metabolism. Androgen deprivation therapy (ADT) serves as the standard treatment for advanced-stage PCa. However, despite initial patient responses, castrate resistance emerges ultimately, necessitating novel therapeutic approaches. Therefore, in this study, we aimed to investigate the role of monocarboxylate transporters (MCTs) in PCa post-ADT and evaluate their potential as therapeutic targets. METHODS: PCa cells (LNCaP and C4-2 cell line), which has high prostate-specific membrane antigen (PSMA) and androgen receptor (AR) expression among PCa cell lines, was used in this study. We assessed the expression of MCT1 in PCa cells subjected to ADT using charcoal-stripped bovine serum (CSS)-containing medium or enzalutamide (ENZ). Furthermore, we evaluated the synergistic anticancer effects of combined treatment with ENZ and SR13800, an MCT1 inhibitor. RESULTS: Short-term ADT led to a significant upregulation in folate hydrolase 1 (FOLH1) and solute carrier family 16 member 1 (SLC16A1) gene levels, with elevated PSMA and MCT1 protein levels. Long-term ADT induced notable changes in cell morphology with further upregulation of FOLH1/PSMA and SLC16A1/MCT1 levels. Treatment with ENZ, a nonsteroidal anti-androgen, also increased PSMA and MCT1 expression. However, combined therapy with ENZ and SR13800 led to reduced PSMA level, decreased cell viability, and suppressed expression of cancer stem cell markers and migration indicators. Additionally, analysis of human PCa tissues revealed a positive correlation between PSMA and MCT1 expression in tumor regions. CONCLUSIONS: Our results demonstrate that ADT led to a significant upregulation in MCT1 levels. However, the combination of ENZ and SR13800 demonstrated a promising synergistic anticancer effect, highlighting a potential therapeutic significance for patients with PCa undergoing ADT.


Assuntos
Antagonistas de Androgênios , Benzamidas , Transportadores de Ácidos Monocarboxílicos , Nitrilas , Feniltioidantoína , Neoplasias da Próstata , Simportadores , Masculino , Humanos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Transportadores de Ácidos Monocarboxílicos/genética , Linhagem Celular Tumoral , Feniltioidantoína/farmacologia , Feniltioidantoína/análogos & derivados , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Nitrilas/farmacologia , Simportadores/metabolismo , Simportadores/antagonistas & inibidores , Simportadores/genética , Benzamidas/farmacologia
2.
Viruses ; 16(4)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38675909

RESUMO

Adjuvant systemic therapies effectively reduce the risk of breast cancer recurrence and metastasis, but therapy resistance can develop in some patients due to breast cancer stem cells (BCSCs). Oncolytic adenovirus (OAd) represents a promising therapeutic approach as it can specifically target cancer cells. However, its potential to target BCSCs remains unclear. Here, we evaluated a Cox-2 promoter-controlled, Ad5/3 fiber-modified OAd designed to encode the human sodium iodide symporter (hNIS) in breast cancer models. To confirm the potential of OAds to target BCSCs, we employed BCSC-enriched estrogen receptor-positive (ER+) paclitaxel-resistant (TaxR) cells and tumorsphere assays. OAd-hNIS demonstrated significantly enhanced binding and superior oncolysis in breast cancer cells, including ER+ cells, while exhibiting no activity in normal mammary epithelial cells. We observed improved NIS expression as the result of adenovirus death protein deletion. OAd-hNIS demonstrated efficacy in targeting TaxR BCSCs, exhibiting superior killing and hNIS expression compared to the parental cells. Our vector was capable of inhibiting tumorsphere formation upon early infection and reversing paclitaxel resistance in TaxR cells. Importantly, OAd-hNIS also destroyed already formed tumorspheres seven days after their initiation. Overall, our findings highlight the promise of OAd-hNIS as a potential tool for studying and targeting ER+ breast cancer recurrence and metastasis.


Assuntos
Adenoviridae , Neoplasias da Mama , Resistencia a Medicamentos Antineoplásicos , Células-Tronco Neoplásicas , Terapia Viral Oncolítica , Vírus Oncolíticos , Paclitaxel , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Neoplasias da Mama/terapia , Neoplasias da Mama/tratamento farmacológico , Paclitaxel/farmacologia , Adenoviridae/genética , Adenoviridae/fisiologia , Vírus Oncolíticos/genética , Vírus Oncolíticos/fisiologia , Terapia Viral Oncolítica/métodos , Feminino , Linhagem Celular Tumoral , Animais , Camundongos , Simportadores/metabolismo , Simportadores/genética , Vetores Genéticos/genética
3.
Sci Rep ; 14(1): 9355, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654093

RESUMO

Thyroid hormones (TH) play critical roles during nervous system development and patients carrying coding variants of MCT8 (monocarboxylate transporter 8) or THRA (thyroid hormone receptor alpha) present a spectrum of neurological phenotypes resulting from perturbed local TH action during early brain development. Recently, human cerebral organoids (hCOs) emerged as powerful in vitro tools for disease modelling recapitulating key aspects of early human cortex development. To begin exploring prospects of this model for thyroid research, we performed a detailed characterization of the spatiotemporal expression of MCT8 and THRA in developing hCOs. Immunostaining showed MCT8 membrane expression in neuronal progenitor cell types including early neuroepithelial cells, radial glia cells (RGCs), intermediate progenitors and outer RGCs. In addition, we detected robust MCT8 protein expression in deep layer and upper layer neurons. Spatiotemporal SLC16A2 mRNA expression, detected by fluorescent in situ hybridization (FISH), was highly concordant with MCT8 protein expression across cortical cell layers. FISH detected THRA mRNA expression already in neuroepithelium before the onset of neurogenesis. THRA mRNA expression remained low in the ventricular zone, increased in the subventricular zone whereas strong THRA expression was observed in excitatory neurons. In combination with a robust up-regulation of known T3 response genes following T3 treatment, these observations show that hCOs provide a promising and experimentally tractable model to probe local TH action during human cortical neurogenesis and eventually to model the consequences of impaired TH function for early cortex development.


Assuntos
Córtex Cerebral , Transportadores de Ácidos Monocarboxílicos , Neurogênese , Organoides , RNA Mensageiro , Simportadores , Receptores alfa dos Hormônios Tireóideos , Feminino , Humanos , Gravidez , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Neurogênese/genética , Neurônios/metabolismo , Organoides/metabolismo , Primeiro Trimestre da Gravidez/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Simportadores/genética , Simportadores/metabolismo , Receptores alfa dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/genética
4.
J Cell Mol Med ; 28(9): e18352, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685685

RESUMO

Gliomas, the most lethal tumours in brain, have a poor prognosis despite accepting standard treatment. Limited benefits from current therapies can be attributed to genetic, epigenetic and microenvironmental cues that affect cell programming and drive tumour heterogeneity. Through the analysis of Hi-C data, we identified a potassium-chloride co-transporter SLC12A5 associated with disrupted topologically associating domain which was downregulated in tumour tissues. Multiple independent glioma cohorts were included to analyse the characterization of SLC12A5 and found it was significantly associated with pathological features, prognostic value, genomic alterations, transcriptional landscape and drug response. We constructed two SLC12A5 overexpression cell lines to verify the function of SLC12A5 that suppressed tumour cell proliferation and migration in vitro. In addition, SLC12A5 was also positively associated with GABAA receptor activity and negatively associated with pro-tumour immune signatures and immunotherapy response. Collectively, our study provides a comprehensive characterization of SLC12A5 in glioma and supports SLC12A5 as a potential suppressor of disease progression.


Assuntos
Neoplasias Encefálicas , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glioma , Cotransportadores de K e Cl- , Simportadores , Humanos , Glioma/genética , Glioma/patologia , Glioma/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Simportadores/genética , Simportadores/metabolismo , Movimento Celular/genética , Prognóstico , Receptores de GABA-A/metabolismo , Receptores de GABA-A/genética
5.
Microbiology (Reading) ; 170(3)2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38488830

RESUMO

Sialic acid (Sia) transporters are critical to the capacity of host-associated bacteria to utilise Sia for growth and/or cell surface modification. While N-acetyl-neuraminic acid (Neu5Ac)-specific transporters have been studied extensively, little is known on transporters dedicated to anhydro-Sia forms such as 2,7-anhydro-Neu5Ac (2,7-AN) or 2,3-dehydro-2-deoxy-Neu5Ac (Neu5Ac2en). Here, we used a Sia-transport-null strain of Escherichia coli to investigate the function of members of anhydro-Sia transporter families previously identified by computational studies. First, we showed that the transporter NanG, from the Glycoside-Pentoside-Hexuronide:cation symporter family, is a specific 2,7-AN transporter, and identified by mutagenesis a crucial functional residue within the putative substrate-binding site. We then demonstrated that NanX transporters, of the Major Facilitator Superfamily, also only transport 2,7-AN and not Neu5Ac2en nor Neu5Ac. Finally, we provided evidence that SiaX transporters, of the Sodium-Solute Symporter superfamily, are promiscuous Neu5Ac/Neu5Ac2en transporters able to acquire either substrate equally well. The characterisation of anhydro-Sia transporters expands our current understanding of prokaryotic Sia metabolism within host-associated microbial communities.


Assuntos
Ácido N-Acetilneuramínico , Ácido N-Acetilneuramínico/análogos & derivados , Transportadores de Ânions Orgânicos , Simportadores , Ácido N-Acetilneuramínico/química , Simportadores/genética , Simportadores/metabolismo , Bactérias/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
6.
Int J Mol Sci ; 25(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38396788

RESUMO

Innate immune cells, including macrophages, are functionally affected by thyroid hormone (TH). Macrophages can undergo phenotypical alterations, shifting between proinflammatory (M1) and immunomodulatory (M2) profiles. Cellular TH concentrations are, among others, determined by TH transporters. To study the effect of TH and TH transporters on macrophage polarization, specific proinflammatory and immunomodulatory markers were analyzed in bone marrow-derived macrophages (BMDMs) depleted of triiodothyronine (T3) and BMDMs with a knockout (KO) of Mct8 and Mct10 and a double KO (dKO) of Mct10/Mct8. Our findings show that T3 is important for M1 polarization, while a lack of T3 stimulates M2 polarization. Mct8 KO BMDMs are unaffected in their T3 responsiveness, but exhibit slight alterations in M2 polarization, while Mct10 KO BMDMs show reduced T3 responsiveness, but unaltered polarization markers. KO of both the Mct8 and Mct10 transporters decreased T3 availability and, contrary to the T3-depleted BMDMs, showed partially increased M1 markers and unaltered M2 markers. These data suggest a role for TH transporters besides transport of TH in BMDMs. This study highlights the complex role of TH transporters in macrophages and provides a new angle on the interaction between the endocrine and immune systems.


Assuntos
Macrófagos , Simportadores , Hormônios Tireóideos , Animais , Camundongos , Macrófagos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Simportadores/genética , Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/farmacologia , Tri-Iodotironina/farmacologia , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo
7.
J Endocrinol ; 261(1)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38329368

RESUMO

The solute carrier (SLC) family is a large group of membrane transport proteins. Their dysfunction plays an important role in the pathogenesis of thyroid cancer. The most well-known SLC is the sodium-iodide symporter (NIS), also known as sodium/iodide co-transporter or solute carrier family 5 member 5 (SLC5A5) in thyroid cancer. The dysregulation of NIS in thyroid cancer is well documented. The role of NIS in the uptake of iodide is critical in the treatment of thyroid cancer, radioactive iodide (RAI) therapy in particular. In addition to NIS, other SLC members may affect the autophagy, proliferation, and apoptosis of thyroid cancer cells, indicating that an alteration in SLC members may affect different cellular events in the evolution of thyroid cancer. The expression of the SLC members may impact the uptake of chemicals by the thyroid, suggesting that targeting SLC members may be a promising therapeutic strategy in thyroid cancer.


Assuntos
Simportadores , Neoplasias da Glândula Tireoide , Humanos , Iodetos/metabolismo , Neoplasias da Glândula Tireoide/genética , Simportadores/genética , Simportadores/metabolismo
8.
Clin Cancer Res ; 30(7): 1220-1222, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38197869

RESUMO

Advanced differentiated thyroid cancer that is resistant to radioactive iodine therapy may become responsive with a unique treatment combination of chloroquine and vorinostat. This treatment was demonstrated in cellular and animal models of thyroid cancer to inhibit endocytosis of the plasma membrane-bound iodine transporter, NIS, and restore iodine uptake. See related article by Read et al., p. 1352.


Assuntos
Iodo , Simportadores , Neoplasias da Glândula Tireoide , Animais , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/radioterapia , Radioisótopos do Iodo/uso terapêutico , Radioisótopos do Iodo/metabolismo , Simportadores/genética
9.
Mol Ther ; 32(4): 1096-1109, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38291756

RESUMO

Spasticity, affecting ∼75% of patients with spinal cord injury (SCI), leads to hyperreflexia, muscle spasms, and cocontractions of antagonist muscles, greatly affecting their quality of life. Spasticity primarily stems from the hyperexcitability of motoneurons below the lesion, driven by an upregulation of the persistent sodium current and a downregulation of chloride extrusion. This imbalance results from the post-SCI activation of calpain1, which cleaves Nav1.6 channels and KCC2 cotransporters. Our study was focused on mitigating spasticity by specifically targeting calpain1 in spinal motoneurons. We successfully transduced lumbar motoneurons in adult rats with SCI using intrathecal administration of adeno-associated virus vector serotype 6, carrying a shRNA sequence against calpain1. This approach significantly reduced calpain1 expression in transduced motoneurons, leading to a noticeable decrease in spasticity symptoms, including hyperreflexia, muscle spasms, and cocontractions in hindlimb muscles, which are particularly evident in the second month post-SCI. In addition, this decrease, which prevented the escalation of spasticity to a severe grade, paralleled the restoration of KCC2 levels in transduced motoneurons, suggesting a reduced proteolytic activity of calpain1. These findings demonstrate that inhibiting calpain1 in motoneurons is a promising strategy for alleviating spasticity in SCI patients.


Assuntos
Traumatismos da Medula Espinal , Simportadores , Animais , Ratos , Neurônios Motores/metabolismo , Espasticidade Muscular/genética , Espasticidade Muscular/terapia , Qualidade de Vida , Reflexo Anormal , Espasmo/metabolismo , Espasmo/patologia , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/terapia , Simportadores/genética
10.
Funct Integr Genomics ; 24(1): 10, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38221563

RESUMO

Thyroid cancer is the most common type of endocrine cancer. Chemokine-like factor (CKLF)-like MARVEL transmembrane domain containing 6 (CMTM6) is recognized as one of its potential immunotherapy targets. The purpose of this study was to investigate the role and molecular mechanism of CMTM6 in regulating the development of thyroid cancer cells. In this study, expression levels of CMTM6 and the sodium/iodide symporter (NIS) were detected by qRT-PCR. Additionally, colony formation assay and flow cytometry were used to detect cell proliferation and apoptosis, while expression levels of various proteins were assessed using Western blotting. Further, the apoptosis and invasion capacity of cells were investigated by scratch and transwell experiments. Finally, the effect of CMTM6 on the epithelial-mesenchymal transition (EMT) of thyroid cancer cells was determined by immunofluorescence assay, which measured the expression levels of epithelial and mesenchymal phenotypic markers. The results of qRT-PCR experiments showed that CMTM6 was highly expressed in thyroid cancer tissues and cells. In addition, knockdown of CMTM6 expression significantly increased NIS expression. Function experiments demonstrated that small interfering (si)-CMTM6 treatment inhibited the proliferation, migration, invasion, and EMT of thyroid cancer cells, while promoting apoptosis of FTC133 cells. Furthermore, mechanistic studies showed that mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) phosphorylation were inhibited by si-CMTM6, as demonstrated by Western blot experiments. In conclusion, our findings demonstrated the role of CMTM6 in the metastasis of thyroid cancer. Briefly, CMTM6 exerts its tumor-promoting effect through the MAPK signaling pathway and could potentially be used as a valuable biomarker for thyroid cancer diagnosis and prognosis.


Assuntos
Proteínas com Domínio MARVEL , Proteínas da Mielina , Simportadores , Neoplasias da Glândula Tireoide , Humanos , Linhagem Celular Tumoral , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Simportadores/genética , Simportadores/metabolismo , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Proteínas com Domínio MARVEL/genética , Proteínas com Domínio MARVEL/metabolismo , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo
11.
J Med Virol ; 96(1): e29428, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38258306

RESUMO

To investigate the relationship between the expression of hepatitis B virus (HBV) functional receptor sodium taurocholate cotransporting polypeptide (NTCP) with disease progression and gender-specific differences in chronic HBV-infected patients. Liver samples were collected from chronic HBV-infected patients who underwent percutaneous liver biopsy or liver surgery. HBV DNA levels and the mRNA and protein expression levels of NTCP in liver tissues were determined. The relationship between NTCP expression and HBV DNA levels, inflammatory activity, fibrosis, and gender-specific differences were analyzed. A total of 94 chronic HBV-infected patients were included. Compared with patients with a METAVIR score of A0-1 or F0-1, patients with score of A2 or F2/F3 had a relatively higher level of NTCP expression. NTCP levels were positively correlated with HBV DNA levels. The inflammatory activity scores and fibrosis scores of women <50 years were significantly lower than those of women ≥50 years and age-matched males. In patients with score A0-2 or F0-3, women <50 years have lower NTCP expression level compared to women ≥50 years and age-matched males. NTCP can promote the disease progression by affecting the viral load of HBV. The NTCP expression difference may be why male and postmenopausal women are more prone to disease progression than reproductive women.


Assuntos
Hepatite B Crônica , Transportadores de Ânions Orgânicos Dependentes de Sódio , Simportadores , Feminino , Humanos , Masculino , Progressão da Doença , DNA Viral/genética , Fibrose , Vírus da Hepatite B , Hepatite B Crônica/genética , Inflamação , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Simportadores/genética , Pessoa de Meia-Idade
12.
J Hum Genet ; 69(2): 69-77, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38012394

RESUMO

SLC5A6 encodes the sodium-dependent multivitamin transporter, a transmembrane protein that uptakes biotin, pantothenic acid, and lipoic acid. Biallelic SLC5A6 variants cause sodium-dependent multivitamin transporter deficiency (SMVTD) and childhood-onset biotin-responsive peripheral motor neuropathy (COMNB), which both respond well to replacement therapy with the above three nutrients. SMVTD usually presents with various symptoms in multiple organs, such as gastrointestinal hemorrhage, brain atrophy, and global developmental delay, at birth or in infancy. Without nutrient replacement therapy, SMVTD can be lethal in early childhood. COMNB is clinically milder and has a later onset than SMVTD, at approximately 10 years of age. COMNB symptoms are mostly limited to peripheral motor neuropathy. Here we report three patients from one Japanese family harboring novel compound heterozygous missense variants in SLC5A6, namely NM_021095.4:c.[221C>T];[642G>C] p.[(Ser74Phe)];[(Gln214His)]. Both variants were predicted to be deleterious through multiple lines of evidence, including amino acid conservation, in silico predictions of pathogenicity, and protein structure considerations. Drosophila analysis also showed c.221C>T to be pathogenic. All three patients had congenital brain cysts on neonatal cranial imaging, but no other morphological abnormalities. They also had a mild motor developmental delay that almost completely resolved despite no treatment. In terms of severity, their phenotypes were intermediate between SMVTD and COMNB. From these findings we propose a new SLC5A6-related disorder, spontaneously remitting developmental delay with brain cysts (SRDDBC) whose phenotypic severity is between that of SMVTD and COMNB. Further clinical and genetic evidence is needed to support our suggestion.


Assuntos
Cistos , Simportadores , Pré-Escolar , Humanos , Recém-Nascido , Biotina/genética , Biotina/metabolismo , Fenótipo , Sódio/metabolismo , Simportadores/genética , Simportadores/metabolismo
13.
Mol Carcinog ; 63(2): 266-274, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37846801

RESUMO

Helicobacter pylori induces DNA methylation in gastric mucosa, which links to gastric cancer (GC) risk. In contrast, CpG island methylator phenotype (CIMP) is defined as high levels of cancer-specific methylation and provides distinct molecular and clinicopathological features of GC. The association between those two types of methylation in GC remains unclear. We examined DNA methylation of well-validated H. pylori infection associated genes in GC and its adjacent mucosa and investigated its association with CIMP, various molecular subtypes and clinical features. We studied 50 candidate loci in 24 gastric samples to identify H. pylori infection associated genes. Identified loci were further examined in 624 gastric tissue from 217 primary GC, 217 adjacent mucosa, and 190 mucosae from cancer-free subjects. We identified five genes (IGF2, SLC16A2, SOX11, P2RX7, and MYOD1) as hypermethylated in H. pylori infected gastric mucosa. In non-neoplastic mucosa, methylation of H. pylori infection associated genes was higher in patients with GC than those without. In primary GC tissues, higher methylation of H. pylori infection associated genes correlated with CIMP-positive and its related features, such as MLH1 methylated cases. On the other hand, GC with lower methylation of these genes presented aggressive clinicopathological features including undifferentiated histopathology, advanced stage at diagnosis. H. pylori infection associated DNA methylation is correlated with CIMP, specific molecular and clinicopathological features in GC, supporting its utility as promising biomarker in this tumor type.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Simportadores , Humanos , Metilação de DNA , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Infecções por Helicobacter/complicações , Infecções por Helicobacter/genética , Fenótipo , Ilhas de CpG/genética , Transportadores de Ácidos Monocarboxílicos/genética , Simportadores/genética
14.
Clin Cancer Res ; 30(7): 1352-1366, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37921808

RESUMO

PURPOSE: Patients with aggressive thyroid cancer are frequently failed by the central therapy of ablative radioiodide (RAI) uptake, due to reduced plasma membrane (PM) localization of the sodium/iodide symporter (NIS). We aimed to understand how NIS is endocytosed away from the PM of human thyroid cancer cells, and whether this was druggable in vivo. EXPERIMENTAL DESIGN: Informed by analysis of endocytic gene expression in patients with aggressive thyroid cancer, we used mutagenesis, NanoBiT interaction assays, cell surface biotinylation assays, RAI uptake, and NanoBRET to understand the mechanisms of NIS endocytosis in transformed cell lines and patient-derived human primary thyroid cells. Systemic drug responses were monitored via 99mTc pertechnetate gamma counting and gene expression in BALB/c mice. RESULTS: We identified an acidic dipeptide within the NIS C-terminus that mediates binding to the σ2 subunit of the Adaptor Protein 2 (AP2) heterotetramer. We discovered that the FDA-approved drug chloroquine (CQ) modulates NIS accumulation at the PM in a functional manner that is AP2 dependent. In vivo, CQ treatment of BALB/c mice significantly enhanced thyroidal uptake of 99mTc pertechnetate in combination with the histone deacetylase (HDAC) inhibitor vorinostat/SAHA, accompanied by increased thyroidal NIS mRNA. Bioinformatic analyses validated the clinical relevance of AP2 genes with disease-free survival in RAI-treated DTC, enabling construction of an AP2 gene-related risk score classifier for predicting recurrence. CONCLUSIONS: NIS internalization is specifically druggable in vivo. Our data, therefore, provide new translatable potential for improving RAI therapy using FDA-approved drugs in patients with aggressive thyroid cancer. See related commentary by Lechner and Brent, p. 1220.


Assuntos
Simportadores , Neoplasias da Glândula Tireoide , Camundongos , Animais , Humanos , Vorinostat/farmacologia , Pertecnetato Tc 99m de Sódio/metabolismo , Radioisótopos do Iodo/uso terapêutico , Neoplasias da Glândula Tireoide/diagnóstico por imagem , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Simportadores/genética , Simportadores/metabolismo , Inibidores de Histona Desacetilases , Linhagem Celular Tumoral
15.
J Neurosci ; 44(4)2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38124193

RESUMO

K+-Cl- cotransporter-2 (KCC2) critically controls neuronal chloride homeostasis and maintains normal synaptic inhibition by GABA and glycine. Nerve injury diminishes synaptic inhibition in the spinal cord via KCC2 impairment. However, how KCC2 regulates nociceptive input to spinal excitatory and inhibitory neurons remains elusive. Here, we show that basal GABA reversal potentials were significantly more depolarized in vesicular GABA transporter (VGAT)-expressing inhibitory neurons than those in vesicular glutamate transporter-2 (VGluT2)-expressing excitatory neurons in spinal cords of male and female mice. Strikingly, inhibiting KCC2 with VU0463271 increased currents elicited by puff NMDA and the NMDAR-mediated frequency of mEPSCs in VGluT2, but not in VGAT, dorsal horn neurons. Notably, VU0463271 had no effect on EPSCs monosynaptically evoked from the dorsal root in VGluT2 neurons. Furthermore, VU0463271 augmented α2δ-1-NMDAR interactions and their protein levels in spinal cord synaptosomes. In Cacna2d1 KO mice, VU0463271 had no effect on puff NMDA currents or the mEPSC frequency in dorsal horn neurons. Disrupting α2δ-1-NMDAR interactions with α2δ-1 C-terminus mimicking peptide diminished VU0463271-induced potentiation in the mEPSC frequency and puff NMDA currents in VGluT2 neurons. Additionally, intrathecal injection of VU0463271 reduced mechanical and thermal thresholds in wild-type mice, but not in Cacna2d1 KO mice. VU0463271-induced pain hypersensitivity in mice was abrogated by co-treatment with the NMDAR antagonist, pregabalin (an α2δ-1 inhibitory ligand), or α2δ-1 C-terminus mimicking peptide. Our findings suggest that KCC2 controls presynaptic and postsynaptic NMDAR activity specifically in excitatory dorsal horn neurons. KCC2 impairment preferentially potentiates nociceptive transmission between spinal excitatory interneurons via α2δ-1-bound NMDARs.Significance statementImpaired function of potassium-chloride cotransporter-2 (KCC2), a key regulator of neuronal inhibition, in the spinal cord plays a major role in neuropathic pain. This study unveils that KCC2 controls spinal nociceptive synaptic strength via NMDA receptors in a cell type- and synapse type-specific manner. KCC2 inhibition preferentially augments presynaptic and postsynaptic NMDA receptor activity in spinal excitatory interneurons via α2δ-1 (previously known as a calcium channel subunit). Importantly, spinal KCC2 impairment triggers pain hypersensitivity through α2δ-1-coupled NMDA receptors. These findings pinpoint the cell and molecular substrates for the reciprocal relationship between spinal synaptic inhibition and excitation in chronic neuropathic pain. Targeting both KCC2 and α2δ-1­NMDA receptor complexes could be an effective strategy in managing neuropathic pain conditions.


Assuntos
Receptores de N-Metil-D-Aspartato , Simportadores , Animais , Feminino , Masculino , Camundongos , Ácido gama-Aminobutírico/metabolismo , N-Metilaspartato/farmacologia , Peptídeos/farmacologia , Células do Corno Posterior/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Medula Espinal/metabolismo , Simportadores/genética , Simportadores/metabolismo , Sinapses/metabolismo
16.
BMC Med ; 21(1): 504, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110950

RESUMO

BACKGROUND: Solute carrier family 13 member 5 (SLC13A5) is a Na+-coupled citrate co-transporter that mediates entry of extracellular citrate into the cytosol. SLC13A5 inhibition has been proposed as a target for reducing progression of kidney disease. The aim of this study was to leverage the Mendelian randomization paradigm to gain insight into the effects of SLC13A5 inhibition in humans, towards prioritizing and informing clinical development efforts. METHODS: The primary Mendelian randomization analyses investigated the effect of SLC13A5 inhibition on measures of kidney function, including creatinine and cystatin C-based measures of estimated glomerular filtration rate (creatinine-eGFR and cystatin C-eGFR), blood urea nitrogen (BUN), urine albumin-creatinine ratio (uACR), and risk of chronic kidney disease and microalbuminuria. Secondary analyses included a paired plasma and urine metabolome-wide association study, investigation of secondary traits related to SLC13A5 biology, a phenome-wide association study (PheWAS), and a proteome-wide association study. All analyses were compared to the effect of genetically predicted plasma citrate levels using variants selected from across the genome, and statistical sensitivity analyses robust to the inclusion of pleiotropic variants were also performed. Data were obtained from large-scale genetic consortia and biobanks, with sample sizes ranging from 5023 to 1,320,016 individuals. RESULTS: We found evidence of associations between genetically proxied SLC13A5 inhibition and higher creatinine-eGFR (p = 0.002), cystatin C-eGFR (p = 0.005), and lower BUN (p = 3 × 10-4). Statistical sensitivity analyses robust to the inclusion of pleiotropic variants suggested that these effects may be a consequence of higher plasma citrate levels. There was no strong evidence of associations of genetically proxied SLC13A5 inhibition with uACR or risk of CKD or microalbuminuria. Secondary analyses identified evidence of associations with higher plasma calcium levels (p = 6 × 10-13) and lower fasting glucose (p = 0.02). PheWAS did not identify any safety concerns. CONCLUSIONS: This Mendelian randomization analysis provides human-centric insight to guide clinical development of an SLC13A5 inhibitor. We identify plasma calcium and citrate as biologically plausible biomarkers of target engagement, and plasma citrate as a potential biomarker of mechanism of action. Our human genetic evidence corroborates evidence from various animal models to support effects of SLC13A5 inhibition on improving kidney function.


Assuntos
Insuficiência Renal Crônica , Simportadores , Humanos , Biomarcadores , Cálcio , Citratos , Creatinina , Cistatina C , Desenvolvimento de Medicamentos , Estudo de Associação Genômica Ampla , Rim , Análise da Randomização Mendeliana , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/genética , Simportadores/genética
17.
Arch. argent. pediatr ; 121(6): e202202968, dic. 2023. tab
Artigo em Inglês, Espanhol | LILACS, BINACIS | ID: biblio-1518580

RESUMO

Los transportadores de monocarboxilatos (MCT) permiten el ingreso celular de hormonas tiroideas, especialmente en el sistema nervioso central (SNC), donde son indispensables para el neurodesarrollo. La deficiencia de MCT8 produce la combinación de hipotiroidismo en SNC e hipertiroidismo periférico, caracterizada por T3 elevada. El único tratamiento actualmente disponible es el ácido 3,3',5-triyodotiroacético (TRIAC), un análogo de hormonas tiroideas que tiene como objetivo mejorar la tirotoxicosis periférica y prevenir la progresión del deterioro neurológico. En el presente artículo, se evalúan las características clínicas, imagenológicas, bioquímicas y genéticas de 4 pacientes con deficiencia de MCT8 tratados con TRIAC hasta la fecha, las dosis utilizadas y la respuesta al tratamiento.


Monocarboxylate transporters (MCTs) allow the cellular entry of thyroid hormones, especially into the central nervous system (CNS), where they are crucial for neurodevelopment. MCT8 deficiency results in the combination of hypothyroidism in the CNS and peripheral hyperthyroidism, characterized by elevated T3 levels. The only treatment currently available is 3,3',5-triiodothyroacetic acid (TRIAC), a thyroid hormone analogue aimed at improving peripheral thyrotoxicosis and preventing the progression of neurological impairment. Here we assess the clinical, imaging, biochemical, and genetic characteristics of 4 patients with MCT8 deficiency who have received TRIAC to date, the doses used, and the response to treatment.


Assuntos
Humanos , Lactente , Criança , Simportadores/genética , Hormônios Tireóideos , Tri-Iodotironina , Transportadores de Ácidos Monocarboxílicos/genética
19.
Neoplasia ; 43: 100925, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37562258

RESUMO

PURPOSE: Owing to the close relationship between mast cells and cancer progression, an imaging technique that can be applied in a clinical setting to explore the biological behavior of mast cells in the tumor microenvironment is needed. In this study, we visualized mast cell migration to lung tumor lesions in live mice using sodium iodide symporter (NIS) as a nuclear medicine reporter gene. EXPERIMENTAL DESIGN: The murine mast cell line MC-9 was infected with retrovirus including NIS, luciferase (as a surrogate marker for NIS), and Thy1.1 to generate MC-9/NFT cells. Radioiodine uptake was measured in MC-9/NFT cells, and an inhibition assay of radioiodine uptake using KCLO4 was also performed. Cell proliferation and FcεRI expression was examined in MC-9 and MC-9/NFT cells. The effect of mast cell-conditioned media (CM) on the proliferation of Lewis lung cancer (LLC) cells was examined. The migration level of MC-9/NFT cells was confirmed in the presence of serum-free media (SFM) and CM of cancer cells. After intravenous injection of MC-9/NFT cells into mice with an LLC tumor, I-124 PET/CT and biodistribution analysis was performed. RESULTS: MC-9/NFT cells exhibited higher radioiodine avidity compared to parental MC-9 cells; this increased radioiodine avidity in MC-9/NFT cells was reduced to basal level by KCLO4. Levels of FcεRI expression and cell proliferation were not different in parental MC-9 cell and MC-9/ NFT cells. The CM of MC-9/NFT cells increased cancer cell proliferation relative to that of the SFM. The migration level of MC-9/NFT cells was higher in the CM than the SFM of LLC cells. PET/CT imaging with I-124 clearly showed infiltration of reporter mast cells in lung tumor at 24 h after transfer, which was consistent with the findings of the biodistribution examination. CONCLUSION: These findings suggest that the sodium iodide symporter can serve as a reliable nuclear medicine reporter gene for non-invasively imaging the biological activity of mast cells in mice with lung tumors. Visualizing mast cells in the tumor microenvironment via a nuclear medicine reporter gene would provide valuable insights into their biological functions.


Assuntos
Neoplasias Pulmonares , Medicina Nuclear , Simportadores , Animais , Camundongos , Genes Reporter , Radioisótopos do Iodo/metabolismo , Radioisótopos do Iodo/uso terapêutico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Distribuição Tecidual , Simportadores/genética , Simportadores/metabolismo , Movimento Celular/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Linhagem Celular Tumoral , Microambiente Tumoral
20.
Int J Mol Sci ; 24(11)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37298594

RESUMO

Monocarboxylate transporter 8 (MCT8) and organic anion-transporting polypeptide 1C1 (OATP1C1) are thyroid hormone (TH) transmembrane transporters relevant for the availability of TH in neural cells, crucial for their proper development and function. Mutations in MCT8 or OATP1C1 result in severe disorders with dramatic movement disability related to alterations in basal ganglia motor circuits. Mapping the expression of MCT8/OATP1C1 in those circuits is necessary to explain their involvement in motor control. We studied the distribution of both transporters in the neuronal subpopulations that configure the direct and indirect basal ganglia motor circuits using immunohistochemistry and double/multiple labeling immunofluorescence for TH transporters and neuronal biomarkers. We found their expression in the medium-sized spiny neurons of the striatum (the receptor neurons of the corticostriatal pathway) and in various types of its local microcircuitry interneurons, including the cholinergic. We also demonstrate the presence of both transporters in projection neurons of intrinsic and output nuclei of the basal ganglia, motor thalamus and nucleus basalis of Meynert, suggesting an important role of MCT8/OATP1C1 for modulating the motor system. Our findings suggest that a lack of function of these transporters in the basal ganglia circuits would significantly impact motor system modulation, leading to clinically severe movement impairment.


Assuntos
Gânglios da Base , Transportadores de Ânions Orgânicos , Simportadores , Adulto , Humanos , Gânglios da Base/metabolismo , Encéfalo/metabolismo , Interneurônios/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Neurônios/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Simportadores/genética , Simportadores/metabolismo , Tálamo/metabolismo , Hormônios Tireóideos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA